Distributed Oblivious RAM for Secure Two-Party Computation

نویسندگان

  • Steve Lu
  • Rafail Ostrovsky
چکیده

We present a new method for secure two-party Random Access Memory (RAM) program computation that does not require taking a program and first turning it into a circuit. The method achieves logarithmic overhead compared to an insecure program execution. In the heart of our construction is a new Oblivious RAM construction where a client interacts with two non-communicating servers. Our two-server Oblivious RAM for n reads/writes requires O(n) memory for the servers, O(1) memory for the client, and O(logn) amortized read/write overhead for data access. The constants in the big-O notation are tiny, and we show that the storage and data access overhead of our solution concretely compares favorably to the state-ofthe-art single-server schemes. Our protocol enjoys an important feature from a practical perspective as well. At the heart of almost all previous single-server Oblivious RAM solutions, a crucial but inefficient process known as oblivious sorting was required. In our two-server model, we describe a new technique to bypass oblivious sorting, and show how this can be carefully blended with existing techniques to attain a more practical Oblivious RAM protocol in comparison to all prior work. As alluded above, our two-server Oblivious RAM protocol leads to a novel application in the realm of secure two-party RAM program computation. We observe that in the secure two-party computation, Alice and Bob can play the roles of two non-colluding servers. We show that our Oblivious RAM construction can be composed with an extended version of the Ostrovsky-Shoup compiler to obtain a new method for secure two-party program computation with lower overhead than all existing constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Privacy-Preserving Big Data Processing through Proxy-Assisted ORAM

We present a novel mechanism that allows a client to securely outsource his private data to the cloud while at the same time to delegate to a third party the right to run certain algorithms on his data. The mechanism is privacy-preserving, meaning that the third party only learns the result of his algorithm on the client’s data, while at the same time the access pattern on the client’s data is ...

متن کامل

Oblivious Network RAM

Oblivious RAM (ORAM) is a cryptographic primitive that allows a trusted CPU to securely access untrusted memory, such that the access patterns reveal nothing about sensitive data. ORAM is known to have broad applications in secure processor design and secure multi-party computation for big data. Unfortunately, due to a well-known logarithmic lower bound by Goldreich and Ostrovsky (Journal of th...

متن کامل

Amortized Sublinear Secure Multi Party Computation

We study the problem of secure two-party and multi-party computation in a setting where some of the participating parties hold very large inputs. Such settings increasingly appear when participants wish to securely query a database server, a typical situation in cloud related applications. Classic results in secure computation require work that grows linearly with the size of the input, while i...

متن کامل

Secure Computation with Sublinear Amortized Work

Traditional approaches to secure computation begin by representing the function f being computed as a circuit. For any function f that depends on each of its inputs, this implies a protocol with complexity at least linear in the input size. In fact, linear running time is inherent for secure computation of non-trivial functions, since each party must “touch” every bit of their input lest inform...

متن کامل

Poster: Oblivious Data Structures

We are among the first to systematically investigate (memory-trace) oblivious data structures. We propose a framework for constructing a variety of oblivious data structures, achieving asymptotic performance gains in comparison with generic Oblivious RAM (ORAM). We evaluate the performance of our oblivious data structures in terms of their bandwidth overheads, and also when applied to a secure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013